Chapter 2: Exploring Data with Tables and Graphs

p. 40-74

Chapter objectives:

Both Ch.2 and Ch.3 focus on important characteristics of data including:

- 1. Center: Shows the middle of the data
- 2. Variation: Measuring the amount the data vary
- 3. Distribution: The nature or shape of the spread of the data
- 4. Outliers: Sample values that lie very far away from the vast majority of the other sample values
- 5. Time: Any change in the characteristics of the data over time.

Section 1: Frequency Distributions for Organizing and Summarizing Data

Objectives:

- Develop an ability to summarize data in the format of a frequency distribution and a relative frequency distribution.
- For a frequency distribution, identify values of class width, midpoint, limits, and boundaries.

Frequency distribution

- Or frequency table
- Helpful for organizing and summarizing data
- Shows how data are partitioned among several categories
- Lists categories along with the number (frequency) of data value in each of them

Grade	50-59	60-69	70-79	80-89	90-100
Frequency	1	2	4	5	2

Definitions

Lower class limits: the smallest numbers that can belong to each of the different classes.

Grades Example: 50, 60, 70, 80, 90

 Upper class limits: the largest numbers that can belong to each of the different classes.

Grades Example: 59, 69, 79, 89, 100

 Class boundaries: the numbers used to separate the classes, but without the gaps created by class limits
 Grades Example: 59.5, 69.5, 79.5, 89.5

Definitions

Class midpoints: the values in the middle of the classes. Grades Example: 54.5, 64.5, 74.5, 84.5, 95
Class width: the differences between the two consecutive lower class limits (or boundaries).

Grades Example: 10, 10, 10, 10

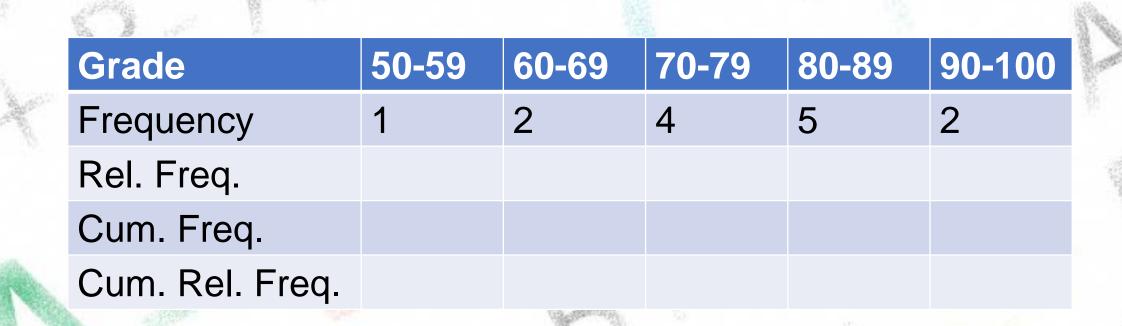
Procedure for constructing a Frequency Distribution

- 1. Select the number of classes
- 2. Calculate the class width. Class width $\approx \frac{(\text{maximum data value}) - (\text{minimum data value})}{\text{number of classes}}$
- 3. Choose the value for the first lower class limit.

Procedure for constructing a Frequency Distribution

- 4. Using the first lower class limit and the class width, list the other lower class limits.
- 5. List the lower class limits in a vertical column and then determine and enter the upper class limits.
- 6. Take each individual data value and put a tally mark in the appropriate class. Add the tally marks to find the total frequency for each class.

Relative frequency distribution


- A variation of the basic frequency distribution
- Each class frequency is replaced by a relative frequency (or proportion or percentage).

Relative frequency for a class =
$$\frac{\text{frequency for a class}}{\text{sum of all frequencies}}$$

Percentage for a class = $\frac{\text{frequency for a class}}{\text{sum of all frequencies}} \times 100\%$

Cumulative frequency distribution

- A variation of a basic frequency distribution
- Frequency for each class is the sum of the frequencies for that class and all previous classes.

Example!

Understanding the data distribution

- Frequency distributions can help!
- In statistics, we often want to know if data is "normal"

Understanding the data distribution

- Frequency distributions can help!
- In statistics, we often want to know if data is "normal"

Characteristics of Frequency Distributions for Normally Distributed Data

- 1. The frequencies start low, then increase to one or two high frequencies, and then decrease to a low frequency.
- 2. The distribution is approximately symmetric.

Example!

Do you think our grades frequency distribution is normal?

		O'AT			
Grade	50-59	60-69	70-79	80-89	90-100
Frequency	1	2	4	5	2
Rel. Freq.	7.1%	14.3%	28.6%	35.7%	14.3%
Cum. Freq.	1	3	7	12	14
Cum. Rel. Freq.	7.1%	21.4%	50%	85.7%	100%

Think about it...

• What could it mean if we see a frequency distribution with two maximum, e.g. one in the middle and one towards the end?

 It is said that lies on tax returns typically over use the digit 6 (According to the TV show NUMB3RS). How could we use frequency distributions to test if the report is falsified?

Section 1 Homework

1, 4, 7 9, 11, 13, 17, 19, 21, 23, 25, 27

This is not to be turned in, but beneficial for your understanding.

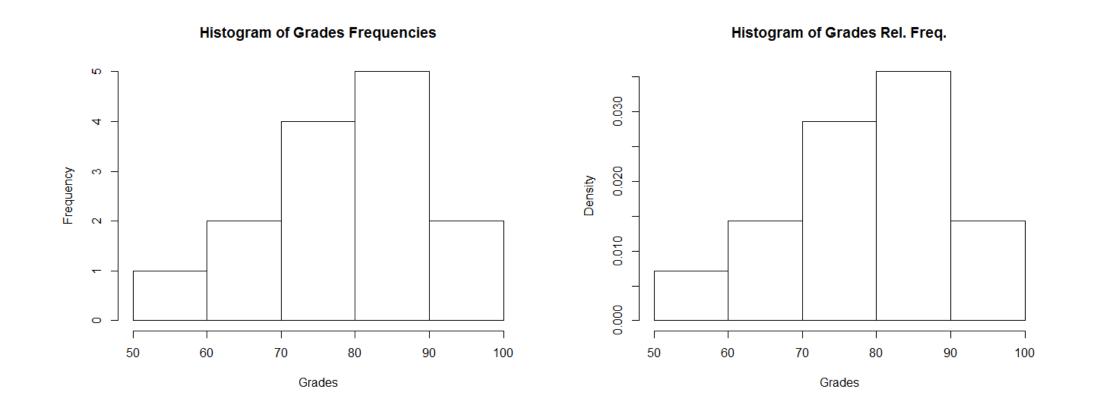
Section 2: Histograms

Objectives:

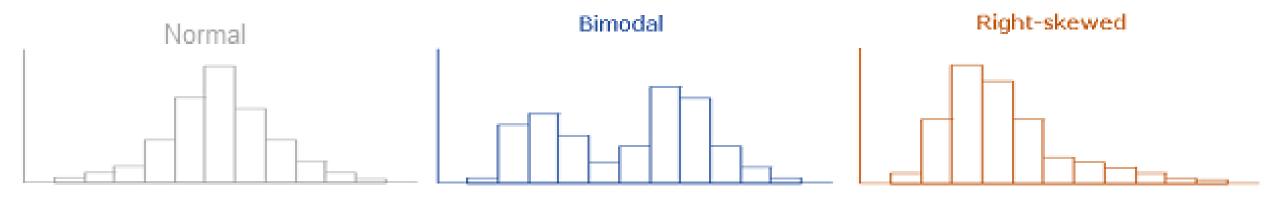
- Develop the ability to picture the distribution of data in the format of a histogram or relative frequency histogram.
- Examine a histogram and identify common distributions

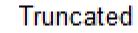
A Histogram...

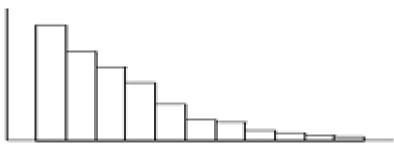
. . .

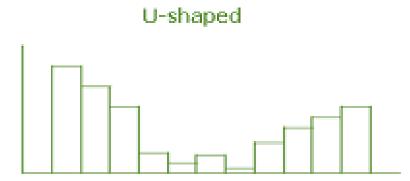

- Is a graph consisting of bars of equal width drawn adjacent to each other (unless there are gaps in the data).
- The horizontal scale (x axis) represents quantitative data values
- The vertical scale (y axis) represents frequencies
- The heights of the bars correspond to frequency distributions
- Is essentially a graph of a frequency distribution
 - A relative frequency histogram can also be drawn

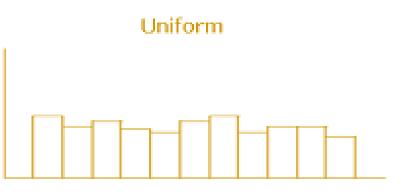
Importance of a histogram:

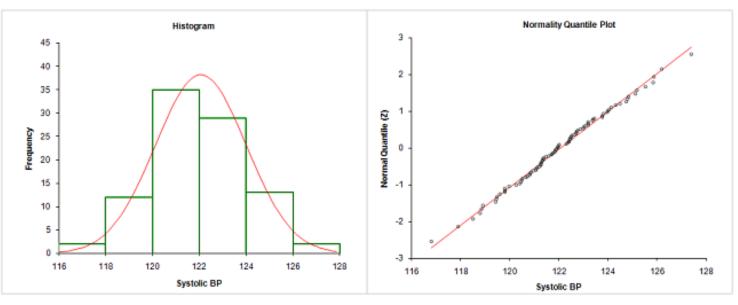

- Visually displays the shape of the distribution of the data
- Shows the location of the center of the data
- Shows the spread of the data
- Identifies outliers




• Histogram of the grades data: {55,61,66,72,73,75,78,81,83,85,87,89,93,95}




Common histogram shapes



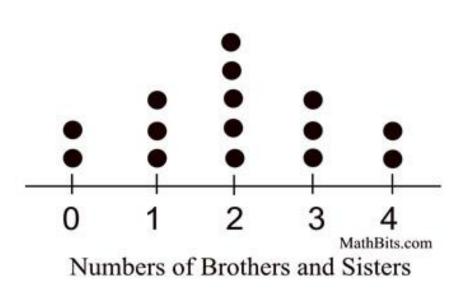
Assessing normality with Normal Quantile Plots

- Still subjective
- Better than histograms, especially for small data
- Essentially, the graph will resemble a straight line if the data is normal

Section 2 Homework

1-4 2 of 5-8 5 of 9-18 19

This is not to be turned in, but beneficial for your understanding.


Section 3: Graphs that Enlighten and Graphs that Deceive

Objectives:

- Develop an ability to graph data using a dotplot, stemplot, timeseries graph, Pareto chart, pie chart, and frequency polygon.
- Determine when a graph is deceptive through the use of a nonzero axis or a pictograph that uses an object of area or volume for one-dimensional data.

Dotplots

- A graph of quantitative data in which each data value is plotted as a point (or dot) above a horizontal axis of values.
- Dots of equal value are stacked
- Features
 - Displays the shape of a distribution
 - It is usually possible to recreate the original list of data values

Stemplot (stem-and-leaf)

- Represents quantitative data
- Separates the data values into 2 parts:
 - The stem (the leftmost digit(s))
 - The leaf (the rightmost digit)
- Features:
 - Shows the shape of the distribution
 - Retains the original data values
 - The sample data are ordered (sorted)

 Test scores -- 3rd Grade

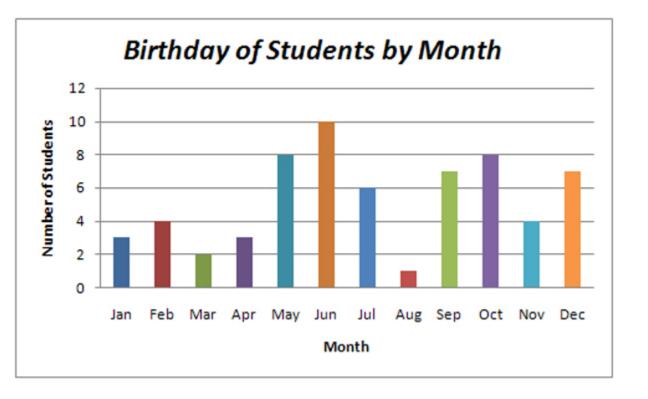
 5
 0

 6
 4


 7
 58

 8
 000111222344566788

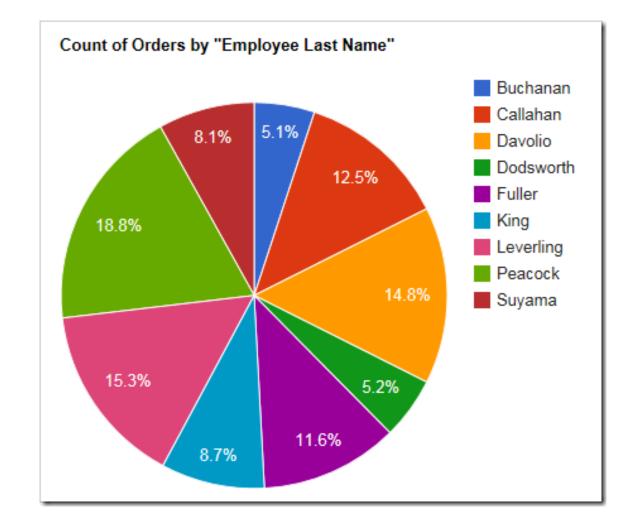
 9
 6789


Time-series graph

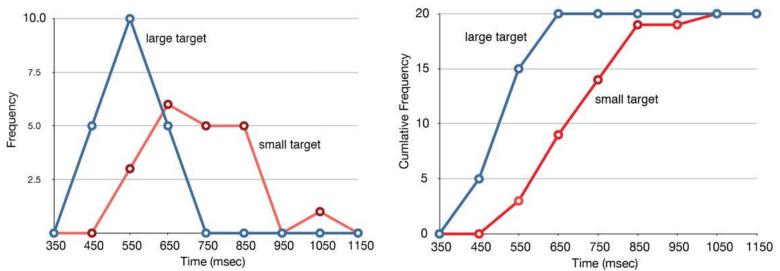
- A graph of time-series data (quantitative data that have been collected at different points in time, i.e. monthly)
- Features
 - · It reveals information about trends over time

Bar graph

- Uses bars of equal width to show frequencies of categories of categorical (qualitative) data.
- The bars may or may not be separated by small gaps
- Features:
 - Shows the relative distribution of categorical data so that it is easier to compare different categories.


Pareto Charts

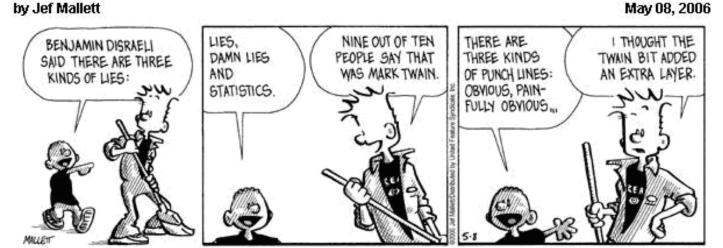
- A bar chart for categorical data where the bars are arranged in descending order by frequency.
- Features
 - Shows the relative distribution of categorical data so that it is easier to compare the different categories.
 - Draws attention to the more important categories (most/least frequent).


Pie chart

- A very common graph
- Depicts categorical data as proportional slices of a circle
- Not the most effective chart available
- Features:
 - Shows the distribution of categorical data in a commonly used format

Frequency polygon

- Uses line segments connected to points located directly above class midpoint values.
- Very similar to a histogram, with line segments instead of bars
- Relative frequency polygons are also used
- These are easier to plot together than histograms

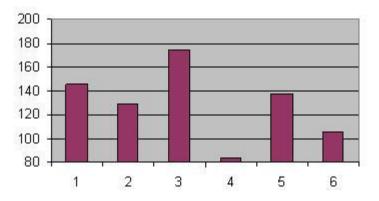


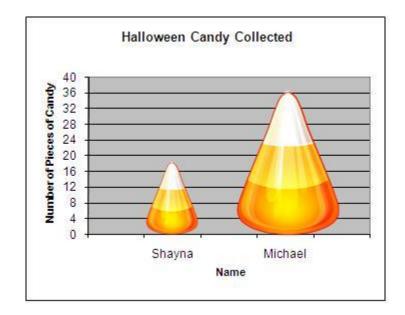
Draw a histogram, pie chart, and dotplot of the grades frequency distribution

Think: Is a Pareto chart useful here?

Graphs that Deceive

- Used to mislead people
- This information should help prevent you from being mislead
- There are many whom are skeptical about statistics, and they should be!


HOW TO LIE WITH STATISTICS Darrell Huff Illustrated by Irving Geis


> Over Half a Million Copies Sold-An Honest to Goodness Bestseller

© UFS, Inc.

Common tools for deception

- Nonzero vertical axis
 - Typically graph that deals with frequencies
 - This exaggerated the differences between groups
- Pictographs
 - Drawings of 2 dimensional data with a 3 dimensional image.
 - Tricks of geometry create misleading images.

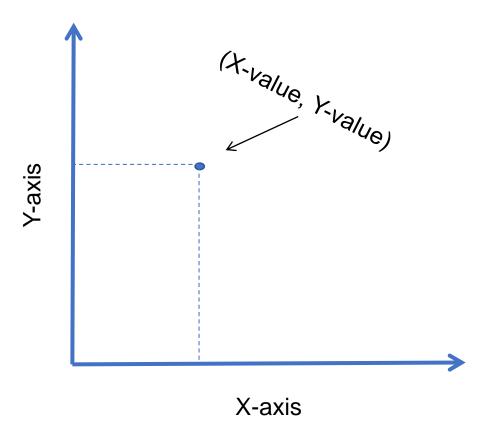
Concluding thoughts...

- These are the most commonly used graphs, but there are many more useful options available.
- Principals of graphics from Edward Tufte:
 - For small data sets of 20 or less, use a table instead of a graph.
 - A graph of data should make us focus on the true nature of the data
 - Do not distort the data
 - Almost all of the ink on a graph should be used for the data

Section 3 Homework

1-4 Odd of 5-15 17,18

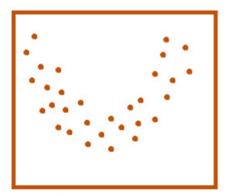
This is not to be turned in, but beneficial for your understanding.

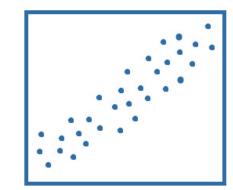

Section 4: Scatterplots, Correlation, and Regression

Objectives:

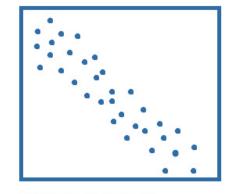
- Develop an ability to construct a scatterplot of paired data.
- Analyze a scatterplot to determine whether there appears to be a correlation between two variables.

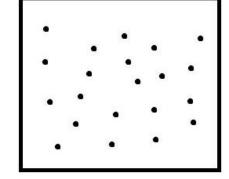
Definitions


A scatter plot or scatter diagram is a plot pf paired (x, y) quantitative data with a horizontal x-axis and vertical yaxis. The horizontal axis is used for the first variable (x), and the vertical axis is used for the second variable (y).


Definitions

A **correlation** exists between two variables when the values of one variable are somehow *associate* with the value of the other variable.

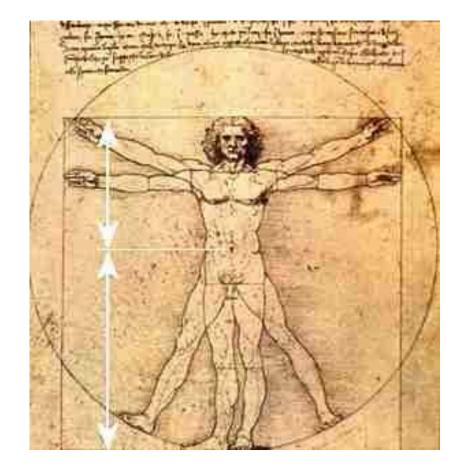

- A linear correlation exists the plotted points of paired data result in a pattern that can be approximated by a straight line.


nonlinear association

positive linear association

negative linear association

no association


CORRELATION DOES NOT IMPLY CAUSATION

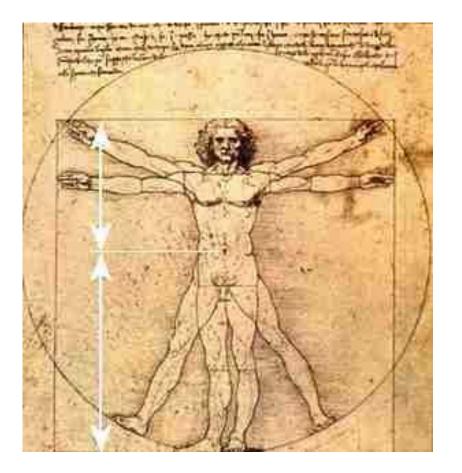
Example: StatCrunch

https://www.statcrunch.com/books/?boo k=triola_statbs2t

Use the Body data set and examine scatter plots of:

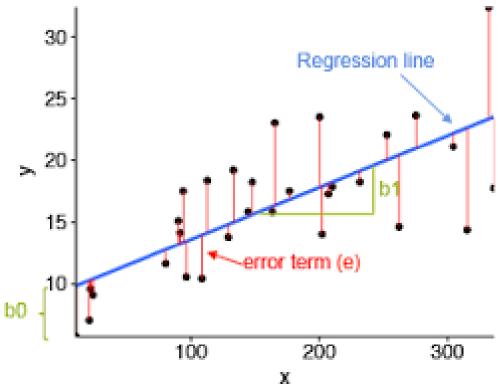
- Weight vs. height
- Height vs. systolic
- Weight vs. waist circumference
- Plots by gender

Linear correlation coefficient


- Denoted by $r \text{ or } \rho$
- Measures strength of association of the linear association between two variables
- -1 < r < 1
- Can be computed manually or via technology

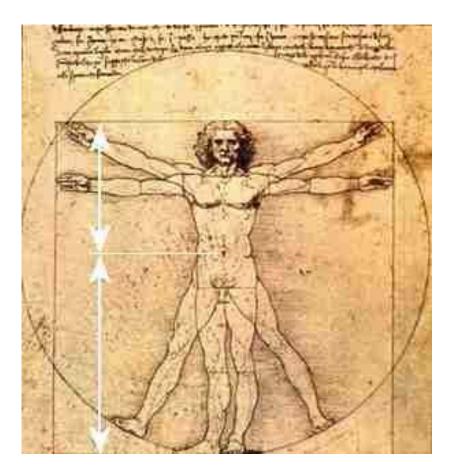
$$r = \frac{1}{n-1} \sum \left(\frac{x - \overline{x}}{s_x} \right) \left(\frac{y - \overline{y}}{s_y} \right)$$

Example: StatCrunch


https://www.statcrunch.com/books/?bo ok=triola_statbs2t

Use the Body data set and examine correlations between different variables.

Linear Regression


- Forms a straight line to describe the relationship between two variables that are correlated.
- This **regression line** is also called the line of best fit.
- Has the following equation: $\hat{y} = b_0 + b_1 x$

Example: StatCrunch

https://www.statcrunch.com/books/?bo ok=triola_statbs2t


Use the Body data set and examine linear regression for weight vs. height and waist vs. BMI.

Section 3 Homework

1-3, 5, 9, 10

This is not to be turned in, but beneficial for your understanding.

